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QUANTUM INFORMATION PROCESSING , SCIENCE OF - The theoretical, experimental and
technological areas covering the use of quantum mechanics for communication and computa-
tion.

Kluwer Encyclopedia of Mathematics, Supplement Il

Research of the last few decades has established that quantum information, or information based on
guantum mechanics, has capabilities that exceed those of traditional “classical” information. For exam-
ple, in communication, quantum information enables quantum cryptography, [which is a method
for communicating in secret. Secrecy is guaranteed because eavesdropping attempts necessarily disturk
the exchanged quantum information without revealing the content of the communication. In computation,
guantum information enables efficient simulation of quantum physicsa[task for which general pur-
pose, efficient, classical algorithms are not known to exist. Quantum information also leads to efficient
algorithms for factoring of large numbers, [5], which is believed to be difficult for classical computers.

An efficient factoring algorithm would break the security of commonly used public key cryptographic
codes used for authenticating and securing internet communications. A fourth application of quantum
information improves the efficiency with which unstructured search problems can be sgjlv@digntum
unstructured search may make it possible to solve significantly larger instances of optimization problems
such as the scheduling and traveling salesman problems.

As a result of the capabilities of quantum information, the science of quantum information processing
is now a prospering, interdisciplinary field focused on better understanding the possibilities and limitations
of the underlying theory, on developing new applications of quantum information and on physically real-
izing controllable quantum devices. The purpose of this primer is to provide an elementary introduction
to quantum information processing (Sez},. and then to briefly explain how we hope to exploit the ad-
vantages of quantum information (Segft. These two sections can be read independently. For reference,
we have included a glossary (Setfof the main terms of quantum information.

When we use the word “information”, we generally think of the things we can talk about, broadcast,
write down, or otherwise record. Such records can exist in many forms, such as sound waves, electrical
signals in a telephone wire, characters on paper, pit patterns on an optical disk, or magnetization on a
computer hard disk. A crucial property of information is that it is “fungible”: It can be represented in many
different physical forms and easily converted from one form to another without changing its meaning. In
this sense information exists independently of the devices used to represent it, but requires at least one
physical representation to be useful.

We call the familiar information stored in today’s computers “classical” or “deterministic” to distin-
guish it from quantum information. It is no accident that classical information is the basis of all human
knowledge. Any information passing through our senses is best modeled by classical discrete or con-
tinuous information. Therefore, when considering any other kind of information, we need to provide a
method for extracting classically meaningful information. We begin by recalling the basic ideas of clas-
sical information in a way that illustrates the general procedure for building an information processing
theory.



1 Classical Information

The basic unit of classical deterministic information is the “bit”. A bit is an abstract entity or “system”
that can be in one of the two states symbolizecblandi. At this point, the symbols for the two states

have no numeric meaning. That is why we have used a font different from that for the nuirdred$.

By making a clear distinction between the bit and its states we emphasize that a bit should be physically
realized as a system or device whose states correspond to the ideal bit's states. For example, if you are
reading this primer on paper, the system used to realize a bit is a reserved location on the surface, and the
state depends on the pattern of inkof 1) in that location. In a computer, the device realizing a bit can be

a combination of transistors and other integrated circuit elements with the state of the bit determined by
the distribution of charge.

In order to make use of information it must be possible to manipulate (or “process”) the states of
information units. The elementary operations that can be used for this purpose are called “gates”. Two
one-bit gates are theot and thereset gates. Applying therot gate to a bit has the effect of “flipping”
the state of the bit. For example, if the initial state of the bis,ishen the state after applyingot is
not(o) = 1. We can present the effect of the gate in the following form:

Initial State Final State
0 — mnot(o) =1, (1)
1 — mnot(1) =o.

Thereset gate sets the state éaregardless of the input:

Initial State Final State
0 — reset(0) = o, 2)
1 — reset(1) = o.

By applying a combination afot andreset gates one can transform the state of a bit in every possible
way.

Information units can be combined to represent more information. Bits are typically combined into
sequences. The states of such a sequence are symbolized by strings of state symbols for the constituen
bits. For example a two-bit sequence can be in one of the following four stadest, 10 and11. The
different bits are distinguished by their position in the sequence.

The one-bit gates can be applied to any bit in a sequence. For exampiettlgate applied to the
second bit of a three-bit sequence in the statechanges the state to1.

One-bit gates act independently on each bit. To compute with multiple bits, we need gates whose
action can correlate the states of two or more bits. One such gaterathE(“not and”) gate, which acts
on two bits in a bit sequence. lts effect is to set the state of the first biif tooth the first and the second
bit are1, otherwise it sets it ta. Here is what happens whaand is applied to two consecutive bits:

Initial State Final State
00 — mnand(00) = 10,
o1 — mnand(o1) = 11, 3
10 — mnand(10) = 10,
11 — nand(11) = o1.



Thenand gate can be applied to any two bits in a sequence. For example, it can be applied to the fourth
and second bits (in this order) of four bits, in which case the initial state is transformed ta 100,
setting the fourth bit t@.

Other operations on bit sequences include adding a new bit to the beginniageind) or end
(append) of a bit sequence. The new bit is always initializedotolt is also possible to discard the
first or last bit, regardless of its state. Versions of these operations that are conditional on the state of
another bit may also be used. An example is the conditional append operation: AithHat is in the
stateo then append a bit.”

The gates just introduced suffice for implementing arbitrary state transformations of a given bit se-
guence. Instructions for applying gates in a particular order are called a “circuit”. An important part of
investigations in information processing is to determine the minimum resources required to perform infor-
mation processing tasks. For a given circuit, the two primary resources are the number of gates and the
total number of bits used. The “circuit complexity” of a desired transformation is the minimum number of
gates needed to implement it.

The model of computation defined by the ability to apply gates in a fixed sequence is called the “circuit
model”. Classical computation extends the circuit model by providing a means for repeating blocks of
instructions indefinitely or until a desired condition is achieved. In principle, it is possible to conceive
of a general purpose computer as a device that repeatedly applies the same circuit to the beginnings of
several bit sequences. In this introduction, we take for granted a traditional programmable computer
based on classical information. Thus a “quantum algorithm” is a program written for such a computer
with additional instructions for applying gates to quantum information. The computational power of this
model is equivalent to that of other general purpose models of quantum computation, such as quantum
Turing machines{].

For an introduction to algorithms and their analysis, sge A useful textbook on computational
complexity with an introduction to classical computation and computational machine mod4ls is [

2 Quantum Information

The foundations of an information processing theory can be constructed by the procedure we followed in
the previous section:

1. Define the basic unit of information.

2. Give the means for processing one unit.

3. Describe how multiple units can be combined.
4. Give the means for processing multiple units.

5. Show how to convert the content of any of the extant units to classical information.

Note that the last step was not required for classical information processing.

In this section, we follow the general procedure for defining an information processing theory to in-
troduce quantum information processing. A simple example that exhibits the advantages of quantum
information is given in Sec®.8. A version of the quantum factoring algorithm is described in S2é&0
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2.1 The Quantum Bit

The fundamental resource and basic unit of quantum information is the quantum bit (qubit), which behaves
like a classical bit enhanced by the superposition principle (see below). From a physical point of view,
a qubit is represented by an ideal two-state quantum system. Examples of such systems include photons
(vertical and horizontal polarization), electrons and other %p?'.ystems (spin up and down), and systems
defined by two energy levels of atoms or ions. From the beginning the two-state system played a central
role in studies of quantum mechanics. It is the most simple quantum system, and in principle all other
guantum systems can be modeled in the state space of collections of qubits.

From the information processing point of view, a qubit’s state space contains the two “logical”, or
“computational”, statego) and|1). The so-called “ket” notation for these states was introduced by
P. Dirac, and its variations are widely used in quantum physics. One can think of the pair of symbols
“|” and “)” as representing the qubit system. Their content specifies a state for the system. In this context
o andi are system-independent state labels. When esayplaced within the ket, the resulting expression
|o) represents the corresponding state of a specific qubit.

The initial state of a qubit is always one of the logical states. Using operations to be introduced later,
we can obtain states which are “superpositions” of the logical states. Superpositions can be expressed
as sumsy|o) + |1) over the logical states with complex coefficients. The complex numbensd 5
are called the “amplitudes” of the superposition. The existence of such superpositions of distinguishable
states of quantum systems is one of the basic tenets of quantum theory called the “superposition principle”.
Another way of writing a general superposition is as a vector

alo) + A1) « (g) (4)

where the two-sided arrow” is used to denote the correspondence between expressions that mean the
same thing.

The qubit states that are superpositions of the logical states are called “pure” states: A superposition
alo) + B|1) is a pure state if the corresponding vector has lengtthat is|«|*> + |3]*> = 1. Such a
superposition or vector is said to be “normalized”. (For a complex number givenby: + iy, one can
evaluatgy|? = x? + y?. Here,z andy are the real and imaginary partef and the symbal is a square
root of —1, that is,i? = —1. The conjugate of is¥ = x — iy. Thus|y|> = 7.) Here are a few examples
of states given in both the ket and the vector notation:

i) = (o) +R)vE= (112 ). ®
o) = Zov— e (). ©
) = Pl - Sy (20, )

The state|y;) is obtained from|:.) by multiplication with:. It turns out that two states cannot be
distinguished if one of them is obtained by multiplying the other by a “pha¥e”Note how we have
generalized the ket notation by introducing expressions suth)a®r arbitrary states.
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The superposition principle for quantum information means that we can have states that are sums of
logical states with complex coefficients. There is another, more familiar type of information whose states
are combinations of logical states. The basic unit of this type of information is the probabilistic bit (pbit).
Intuitively, a pbit can be thought of as representing the as-yet-undetermined outcome of a coin flip. Since
we need the idea of probability to understand how quantum information converts to classical information,
we briefly introduce pbits.

A pbit's state space is a probability distribution over the states of a bit. One very explicit way to
symbolize such a state is by using the express§jos, (1—p):1}, which means that the pbit has probability
p of beingo and1 — p of being1. Thus a state of a pbit is a “probabilistic’ combination of the two
logical states, where the coefficients are nonnegative real numbers sumnigtypical example is the
unbiased coin in the process of being flipped. If “tail” and “head” represanti, respectively, the coin’s
state is{%:o, %:1}. After the outcome of the flip is known, the state “collapses” to one of the logical states
o andi. In this way, a pbit is converted to a classical bit. If the pbit is probabilistically correlated with
other pbits, the collapse associated with learning the pbit’s logical state changes the overall probability
distribution by a process called “conditioning on the outcome”.

A consequence of the conditioning process is that we never actually “see” a probability distribution.
We only see classical deterministic bit states. According to the frequency interpretation of probabilities,
the original probability distribution can only be inferred after one looks at many independent pbits in the
same statép:o, (1 — p):1}: In the limit of infinitely many pbitsp is given by the fraction of pbits seen
to be in the state. As we will explain, we can never “see” a general qubit state either. For qubits there
is a process analogous to conditioning. This process is called “measurement” and converts qubit states to
classical information.

Information processing with pbits has many advantages over deterministic information processing with
bits. One advantage is that algorithms are often much easier to design and analyze if they are probabilistic.
Examples include many optimization and physics simulation algorithms. In some cases, the best avail-
able probabilistic algorithm is more efficient than any known deterministic algorithm. An example is an
algorithm for determining whether a number is prime or not. It is not known whether every probabilistic
algorithm can be “derandomized” efficiently. There are important communication problems that can be
solved probabilistically but not deterministically. For a survey, ség [

What is the difference between bits, pbits and qubits? One way to visualize the difference and see the
enrichment provided by pbits and qubits is shown in Eig.



Bit Pbit Qubit

0 0
®
o
1 1
States: oori {p:0, (1 —p):1} alo) + f|1)

jo* +[B]* =1

FIG. 1: Visual comparison of the state spaces of different information units. The states of a bit correspond
to two points. The states of a pbit can be thought of as “convex” combinations of the states of a bit
and therefore can be visualized as lying on the line connecting the two bit states. A qubit’s pure states
correspond to the surface of the unit sphere in three dimensions, where the logical states correspond to
the poles. This representation of qubit states is called the “Bloch sphere”. The explicit correspondence
is discussed at the end of Segt7. See also the definition and use of the Bloch spherelih [The
correspondence between the pure states and the sphere is physically motivated and comes from a way of
viewing a spin% system as a small quantum magnet. Intuitively, a state is determined by the direction of
the north pole of the magnet.

2.2 Processing One Qubit

The quantum version of theot gate for bits exchanges the two logical states. That is, using ket notation,

not(alo) + 41} ) = alx) + Blo) = lo) + alx). (8)

In vector notation this equation becomes

w(5)-(2)

Another way of expressing the effectwbt is by multiplying the vector by a matrix representingt:

w(5)-(11)()- ()

so we that can identify the action abt with the matrixo, = (1) (1) . An even simpler gate is the one

that does nothing. We call this theop gate, and its matrix form is the identity matrix as shown in the



following equation:

wn(5)-(11)(5)-(5)

Thenoop andnot gates are “reversible”. In other words, we can undo their actions by applying other
gates. For example, the action of thet gate can be undone by anothest gate. The action of every
reversible quantum gate can be represented by matrix multiplication, where the matrix has the additional
property of preserving the length of vectors. Such matrices are called “unitary” and are characterized by
the equatiomd’ A = 1, whereA' is the conjugate transpose 4fand1 is the identity matrix. (The conju-
gate transpose of a matrix is computed by flipping the matrix across the main diagonal and conjugating the
complex numbers.) For gates represented by a matrix, the unitarity condition is necessary and sufficient
for ensuring that pure states get mapped to pure states.

Because qubit states can be represented as points on a sphere, reversible one-qubit gates can be thoug!
of as rotations of the Bloch sphere. This is why such quantum gates are often called “rotations”. As
explained in detail in1], rotations around the, y andz axis are in a sense generated by the three Pauli

matrices
0 1 0 —i 1 0

each of which represents a one-qubit gate. For example, a rotation aroundatie by an angleb is
given bye+%/2 = cos(¢/2)1 — isin(¢/2)o,. To obtain this identity, one can use the power series for
et et =3 ) L AF, and exploit the fact that? = 1 to simplify the expression. Here are some gates that
can be defined with the help of rotations:

90° z-rotation: rotxgpe = \/Li < _12 _1Z )
° . 1 1 _]_
90° y-rotation:  rotyg, = ARSI

(13)
. e"1/2 )

¢ z-rotation: rotz, = 0 £id/2
1 1 1
Hadamard gate H = VA

The rotation gates often show up in controlling spins or ions with radio-frequency pulses or lasers. The
Hadamard gate is used primarily by quantum programmers. It can be expressed as a prodict of a
y-rotation ando.

To check directly that the rotation gates are reversible one can determine their inverses. In this case
and as expected, the inverse of a rotation is the rotation around the same axis in the opposite direction. For



example, the inverses of thety,,. androtz, gates are given by

1 1
roty_goo — \% ( _1 1 )

B ez

Another useful property of the rotation gates is that the angles add when rotations are applied around the
same axis. For exampleptz rotzy = rotz,..

The ket notation can be extended so that we can write gates in a compact form that readily generalizes
to multiple qubits. To do so we have to introduce expressions sugh|as «(o|+/(1|. Thisis called the
“bra” notation. The terminology comes from the term “bracket”. The ‘bra” is the left and the “ket” is the
right part of a matched pair of brackets. From the vector point of ey corresponds to the row vector
(cr, 8). Note that a column vector multiplied by a row vector yields a matrix. In the bra-ket notation, this
corresponds to multiplying a két)) by a bra(¢|, written as|){¢|. Since this represents an operator on
states, we expect to be able to compute the effept pf¢| on a statdy) by forming the product. To be
able to evaluate such products with one-qubit kets and bras, we need the following two rules.

(14)

Distributivity. You can rewrite sums and products using distributivity. For example,

(el + )il = Deollny + 2 ulla). (15)

Observe that we can combine the amplitudes of terms, but we cannot rearrange the order of the bras
and kets in a product.

Inner product evaluation. The product of a logical “bra” and a logical “ket” is evaluated according
to the identities

(ollo) =

(olr) =

(1]lo) =

(1]lr) =

It follows that for logical states, if a bra multiplies a ket, the result cancels unless the states match,
in which case the answer Is Applying inner product evaluation to the example (Eg) results in
§(0||1)+§(1||1) :§0+§1=§. (17)

I

9

1
0
0
1

(16)

To simplify the notation, we can omit one of the two vertical bars in products su¢h|Hg and write

(alb).

To understand inner product evaluation, think of the expressions as products of row and column vec-
tors. For example,
oy — ! O)G):o, (18)
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That is, as vectors the two statd and|1) are orthogonal. In general, j$) and|y) are states, then
(¢]|v) is the “inner product” or “overlap” of the two states. In the expression for the ove(lgpis
computed from{¢) = a|o) + F|1) by conjugating the coefficients and converting the logical kets to bras:
(9] = a{o| + 3(x|. In the vector representation, this is the conjugate transpose of the column vector for
|#), so the inner product agrees with the usual one. Two states are orthogonal if their overlap is zero. We
write |$)" = (¢] and(¢|" = |¢).

Every linear operator on states can be expressed with the bra-ket notation. For example, the bra-ket
expression for theaoop gate isnoop = |o){o| + |1){1|. To applynoop to a qubit, you multiply its state
on the left by the bra-ket expression:

noop (alo) + 1)) = (lo){ol + [1)(xl) (alo) + Bl1))

= Jo)ol (alo) + 8l1) ) + 1) (al (alo) + In) )

— alo){olo) + Blo}{elx) + al1)(ale) + Bl){1])

— alo)1+ Blo)0 + al1)0 + Bl1)1

= alo) + 1) (19)

One way to think about an operator such|ag(b| is to notice that when it is used to operate on a ket
expression, th€b| picks out the matching kets in the state, which are then changled).té-or example,
we can write themot operation aniot = [o)(1] + |1){o].

The coefficients of thga) (b| in a bra-ket representation of a gate correspond to matrix entries in the
matrix representation. The relationship is defined by

@00'0)(0' + a01|o)(1| + @10'1)(0' + a11|1)(1| — ( @00 01 ) . (20)

Q10 Q711

2.3 Two Quantum Bits

Some states of two quantum bits can be symbolized by the juxtaposition (or multiplication) of states of
each quantum bit. In particular, the four logical stai@do), [o}|1), |1)|o), and|1)}|1) are acceptable

pure states for two quantum bits. In these expressions, we have distinguished the qubits by position (first
or second). It is easier to manipulate state expressions if we explicitly name the qubisasdi3. We

can then distinguish the kets by writing, for examgie), for a state of qubif. Now the statdo}|1) can

be written with explicit qubit names (or “labels”) as

o), [1), = |1}, lo), = lo1),, = [10).. (21)

Having explicit labels allows us to unambiguously reorder the states in a product of states belonging to
different qubits. We say that kets for different qubits “commute”.

So far we have seen four states of two qubits, which are the logical states that correspond to the states
of two bits. As in the case of one qubit, the superposition principle can be used to get all the other pure
states. Each state of two qubits is therefore of the form

aloo), + Blox), +~[10), +d[11) (22)

10



whereq, (3, v, andj are complex numbers. Again, there is a column vector form for the state:

, (23)

2 W R

and this vector has to be of unit length, thatd$* + |5]? + |7|? + |4]> = 1. When using the vector form
for qubit states, one has to be careful about the convention used for ordering the coefficients.
Other examples of two-qubit states in ket notation are the following:

o, = 5 (o + 1)),
i), = s (10) = 1)) 5 (le) +il),)
= 2 (100}, +ilony, o), — ilr),)
i)y = (o), + I1),).
i), = (loa), — o), ) (24)

The first two of these states have the special property that they can be written as a jpweg{ist)

of a state of qubitd and a state of qubiB. The second expression fp¢,) shows that the product
decomposition is not always easy to see. Such states are called “product” states. The last t}o.gtates,
and|y,), . are two of the famous Bell states. They have no such representation as a product of independent
states of each qubit. They are said to be “entangled” because they contain a uniquely quantum correlation
between the two qubits. Pbits can also have correlations that cannot be decomposed into product states,
but the entangled states have additional properties that make them very useful. For exahtipkeaifid

Bob each have one of the qubits that together are in the [sta)e, they can use them to create a secret

bit for encrypting their digital communications.

2.4 Processing Two Qubits

The simplest way of modifying the state of two qubits is to apply one of the one-qubit gates. If the gates
are expressed in the bra-ket notation, all we need to do is add qubit labels so that we know which qubit
each bra or ket belongs to. For example, il gate for qubitB is written as

not® = [o)(x] + [1)ol. (25)

The labels for bra expressions occur as left superscripts. To apply expressions like this to states, we need
one more rule:

11



Commutation. Kets and bras with different labels can be interchanged in products (they “com-
mute”). This is demonstrated by the following example:

(lo)xl) fox),, = lo)(x[lo},|1),
= o), [o)a] |1},
= o), lo},(x|x),
= IO)AIO)B = IOO)AB' (26)
Note that we cannot merge the two vertical bars in expressions suih| kg, because the two terms
belong to different qubits. The bars can only be merged when the expression is an inner product, which
requires that the two terms belong to the same qubit.

With the rules for bra-ket expressions in hand, we can applytitegate to one of our Bell states to
see how it acts:

not®—=(foo), + [11), ) - (|o>B<1|+|1>B<o|) 5 (Ioo), + 1))
= L (1oxan(ioon, + 1, + el (foe, + 1,

= =5 (Ioxtalloo),, + [o)(allaz), + x)¥felloo), + [x)ell11),

= 5 (IovJoxallo), + ) Jo)allz), +lo ello), + 1), x)(el )
= %(M o), 0+ [1)fo), 1+ o) 1), 1+ [1),I1), 0)

- 7(|1> o), + le) 1), ) = \/5(|01)AB+I10)AB). (27)

The effect of the gate was to flip the state symbols for gebivhich results in another Bell state.

The gatenot(® can also be written asdax 4 matrix acting on the vector representation of a two-qubit
state. However, the relationship between this matrix and the one-qubit matrix is not as obvious as for the
bra-ket expression. The matrix is

o = O

1
0
0

o O O

0
not(® — (1) , (28)

0010

which swaps the top two and the bottom two entries of a state vector.

One way to see the relationship between the one and the two-qubit representation of thet Fate
to notice that because th@op gate acts as the identity, and because we can act on different qubits inde-
pendentlynoop®not® ~ not®). The matrix fornot® can be expressed as a “Kronecker product”
(“®") of the matrices fomoop andnot.

wtan® = (34)o(11)

12



)
O =
)
O =

(1) o(v o)

0 1 0 1
(Vo) (Vo)
0100
100 0
- 000 1 (29)
0010

The Kronecker product of two matrices expands the first matrix by multiplying each entry by the second
matrix. A disadvantage of the matrix representation of quantum gates is that it depends on the number and
order of the qubits. However, it is often easier to visualize what the operation does by writing down the
corresponding matrix.

One cannot do much with one-bit classical gates. Similarly, the utility of one-qubit gates is limited.
In particular, it is not possible to obtain a Bell state starting frlw),  or any other product state. We
therefore need to introduce at least one two-qubit gate not expressible as the product of two one-qubit
gates. The best known such gate is the “controlled-neito) gate. Its action can be described by
the statement, “if the first bit is, flip the second bit, otherwise do nothing”. The bra-ket and matrix
representations for this action are

cnot”® = lo) (o] + [1)Xx] <|°)BB(1| + Il)BB(O|>
1000
0100
- 0001 (30)
0010

The cnot gate is reversible because its action is undone if a secand is applied. This outcome is
easy to see by computing the square of the matrixciost, which yields the identity matrix. As an
exercise in manipulating bras and kets, let us calculate the product efiwtogates by using the bra-ket
representation.

enot*enot®®  (foyol+ )al (10§l +1tel) ) (o)l + )l (el + el ). )

The first step is to expand this expression by multiplying out. Expressions syojf{a$ |1)¥(1| cancel
because of the inner product evaluation rtfej1) = 0. One can also reorder bras and kets with different
labels and rewritgo)¥(o| [0)*(o| = [0)¥o] to get

cnot®®enotA® = |o):(0| + |l):(l| <|O)BB(l| + |l):(0|> (|O):(l| + |1)BB(O|>

= o)ol + [1)al (lo)ol + [1)(ul)

= lo)Xol + |1)}(1|noop®

13



~ [o){ol + |1
— noop®™

~ 1, (32)

where we used the fact that when the bra-ket expressiondop is applied to the ket expression for a
state it acts the same as (here denoted by the symipitiultiplication by the numbet.

2.5 Using Many Quantum Bits

To use more than two, say five, qubits, we can just start with the giate) o) [o) |o) and apply

gates to any one or two of these qubits. For examgiet(®® applies thecnot operation from qubit

D to qubit B. Note that the order od andB in the label for thecnot operation matters. In the bra-

ket notation, we simply multiply the state with the bra-ket formcafot(®®) from the left. One can
express everything in terms of matrices and vectors, but now the vectors havedength2, and the
Kronecker product expression fenot(°®) requires some reordering to enable inserting the operation so

as to act on the intended qubits. Nevertheless, to analyze the properties of all reversible (that is, unitary)
operations on these qubits, it is helpful to think of the matrices, because a lot of useful properties about
unitary matrices are known. One important result from this analysis is that every matrix that represents
a reversible operation on quantum states can be expressed as a product of the one- and two-qubit gates
introduced so far. We say that this set of gates is “universal”.

For general purpose computation, it is necessary to have access to arbitrarily many qubits. Instead of
assuming that there are infinitely many from the start, it is convenient to have an operation to add a new
qubit, namelyadd. To add a new qubit labeleXlin the stateo) , applyadd™ to the current state. This
operation can only be used if there is not already a qubit lab¢léd the bra-ket notation, we implement
theadd™ operation by multiplying the ket expression for the current statppy

2.6 Qubit Measurements

In order to classically access information about the state of qubits we use the measurement operation
meas. This is an intrinsically probabilistic process that can be applied to any extant qubit. For informa-
tion processing, one can think aieas as a subroutine or function that returns eithesr 1 as output.

The output is called the “measurement outcome”. The probabilities of the measurement outcomes are
determined by the current state. The state of the qubit being measured is “collapsed” to the logical state
corresponding to the outcome. Suppose we have just one qubit, currently in thie/)$tate|o) + 3]1).
Measurement of this qubit has the effect

o:]o) with probability|«/|?,

meas (a|o) + ﬁ|1)> = (33)
1:|1) with probability|3]%.

The classical output is given before the new state for each possible outcome. This measurement behavior
explains why the amplitudes have to define unit length vectors: Up to a phase, they are associated with
square roots of probabilities.

14



For two qubits the process is more involved. Because of possible correlations between the two qubits,
the measurement affects the state of the other one too, similar to conditioning for pbits after one “looks”
at one of them. As an example, consider the state

2 12 1
[¥),, = §|01)AB + §|10)AB + §|00)AB~ (34)

To figure out what happens when we measure gAbitve first rewrite the current state in the form
alo) |¢o), + Bl1) |¢1),, where|gpo) and|¢:), are pure states for qubB. It is always possible to do
that. For the example of EG4:

[0 = clo)ln), + slo)lo), + ) lo),

= 1o, (GIn), + 510} ) + 1) 2o,

= on (ko) + =) + 21, 1o, ). ()

soa =¥, 3=12 |¢0), = —=lo), + 1), and|¢1), = |o),. The last step required pulling out the factor

of \/?5 to make sure tha{t;bo)B is properly normalized for a pure state. Now that we have rewritten the state,
the effect of measuring qubt can be given as follows:

o:[0) |¢o), with probability|a|?,

meas® (alo),|6u), + A1), 161), ) = (36)
1:[1) [¢1),  with probability |3,

For the example, the measurement outcomewsth probabilityg, in which case the state collapses to
o), <\/i5|o)B + %|1)B>. The outcome is. with probability 5, in which case the state collapsed 1§ |o) .
The probabilities add up tbas they should.

The same procedure works for figuring out the effect of measuring one of any number of qubits. Say
we want to measure qudg among qubit®A, B, C, D, currently in stateizp)ABC First rewrite the state in
the formalo) |¢o), ., + Bl1),191), . making sure that thaCD superpositions are pure states. Then the
outcome of the measurementoisvith probability |«|* and 1 with probability |3|?. The collapsed states
are|o) |¢o), ., and|1) [¢1), , respectively.

Probabilities of the measurement outcomes and the new states can be calculated systematically. For
example, to compute the probability and state for outcomemeas® given the statgy)), , one can first
obtain the unnormalized ket expressiey). = *o]|v) . by using the rules for multiplying kets by bras.
The probability is given by, = B(¢6|¢6)B, and the collapsed, properly normalized pure state is

o), [0}/ v/Po = o) {oll¥),, /v/Po, (37)
The operato, = |o)A(o| is called a “projection operator” or “projector” for short. If we perform the same
computation for the outcome we find the projector’, = [1))1]|. The two operators satisfff,> = P,,
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P," = P,andP,+ P, = 1. In terms of the projectors, the measurement’s effect can be written as follows:

0:Po|tb), /+/Po  With probability o,
meas[), = (38)
L:P|y), /\/pr with probabilityp,

wherepy = "Xy | Po[v),  andp, = "y | P,[¢), . In quantum mechanics, any pair of projectors satisfying
the properties given above is associated with a potential measurement whose effect can be written in the
same form. This is called a binary “von Neumann”, or “projective”, measurement.

2.7 Mixtures and Density Operators

The measurement operation “reads out” information from qubits to pbits. What if we discard the pbit that
contains the measurement outcome? The result is that the qubits are in a probabilistic “mixture” of two
pure states. Such mixtures are a generalization of pure states. The obvious way to think about a mixture
is that we have a probability distribution over pure quantum states. For example, after discarding the pbit
and qubitA in Eq. 36, we can write the state & asp = {|a|*:|¢o), , |8]*]¢1),}, using the notation for
probability distributions introduced earlier.

Mixtures frequenty form when using irreversible operations such as measurement. Except for mea-
surement, the quantum gates that we have introduced so far are reversible and therefore transform pure
states to pure states, so that no mixtures can be formed. One of the fundamental results of reversible classi-
cal and quantum computation is that there is no loss in power in using only reversible gates. Specifically, it
is possible to change a computation that includes irreversible operations to one that accomplishes the same
goal, has only reversible operations and is efficient in the sense that it uses at most polynomial additional
resources. However, the cost of using only reversible operations is not negligible. In particular, for ease
of programming, and more importantly, when performing repetitive error-correction tasks. 3edHe
inability to discard or reset qubits can be very inconvenient. We therefore introduce additional operations
that enable resetting and discarding.

Although resetting has a so-called “thermodynamic” cost (think of the heat generated by a computer), it
is actually a simple operation. Tlreset operation applied to qub# can be thought of as the result of first
measuringdj, then flippingA if the measurement outcomel|is), and finally discarding the measurement
result. Using the notation of EGS, the effect on a pure state),  is given by:

resetM|y) = {lal*[o) |0), , [B*:10) [é1),}- (39)

To applyreset to an arbitrary probability distribution, you apply it to each of the distribution’s pure
states and combine the results to form an expanded probability distributiondisteerd ) operation
is reset™ followed by discarding qubif.. Therefore, in the expression for the state afteset®, all
the |o), are removed. Itis an important fact that every physically realizable quantum operation, whether
reversible or not, can be expressed as a combinati@aaldfoperations, gates from the universal set and
discard operations.

The representation of mixtures using probability distributions over pure states is redundant. That is,
there are many probability distributions that are physically indistinguishable. A non-redundant description

16



of a quantum state can be obtained by using “density operators”. The density operator for the mixture
given in Eq.39is given by
p= |04|2|¢0)BB(¢0| + |5|2|¢1)BB(¢1|- (40)

The general rule for calculating the density operator from a probability distribution is as follows: For
each pure statgp) in the distribution, calculate the operatdes (¢| and sum them weighted by their
probabilities.

There is a way to apply gates to the density operators defined by states. If the gate acts by the unitary
operatorU, then the effect of applying it tp is given byUpUT, whereU' is the conjugate transpose of
U. (In the bra-ket expression féf, U' is obtained by replacing all complex numbers by their conjugates,
and terms such g#)(¢| by [£)(¢|.)

The relationship between a qubit’s state space and a sphere can be explained in terms of the qubit’s
density operators. In matrix form, this operator & a 2 matrix, which can be written uniquely as a sum
(1 + zo, + yo, + z0,)/2. One can check that if the density operaftp} (| for a qubit’s pure state is
written as such a sum,

[UM| = (M + zoy + yo, + 202)/2, (41)

then the vecto(z, y, z) thus obtained is on the surface of the unit sphere in three dimensions. In fact, for
every vectorn(z, y, z) on the unit sphere, there is a unique pure state satisfying EdSince the density
operators for mixtures are arbitrary, convex (that is probabilistic) sums of pure states, théiset of

thus obtained for mixtures fills out the unit ball. The rotations introduced earlier modify the yector)

in the expected way, by rotation of the vector around the appropriate axisl §der[more details.

2.8 Quantum Computation

The model of computation defined by the one- and two-qubit gates and the operations of addijg (
measuringneas) and discardingdiscard) qubits is called the “quantum network model”. A sequence

of instructions for applying these operations is called a “quantum network”. Quantum computation extends
the network model by providing a means for repeating blocks of instructions. Such means can be specified
by a formal machine model of computation. There are several such models of classical and quantum
computers. One of the best known is the Turing machine, which has a quantum analogue, the quantum
Turing machine. This model has its uses for formal studies of computation and complexity, but is difficult
to program. Fortunately, as mentioned in Séctthere is no loss of computational power if the means

for repeating instructions is provided by a classical computer that can apply gates and other operations to
qubits. A general quantum algorithm is a program written for such a computer.

There are three practical methods that can be used to write quantum networks and algorithms. The
firstis to use the names for the different operations and algebraically multiply them. The second is to draw
guantum networks, which are pictorial representations of the sequence of steps in time, somewhat like
flowcharts without loops. The third is to use a generic programming language enhanced with statements
for accessing and modifying quantum bits. The first two methods work well as long as the sequence is
short and we do not use many operations that depend on measurement outcomes or require loops. They
are often used to describe subroutines of longer algorithms presented either in words or by use of the third
method.
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To see how to use the different methods and also to illustrate the power of quantum computation, we
work out a short quantum algorithm that solves the following problem:
The Parity Problem: Given is a “black box” quantum operatidB“8® that has the following effect
when applied to a logical basis state:

BB(ABC)MACLB)ABWC)C — |CLACLB)AB|GC @ (baaa ® bsas))c, (42)

whereb, andbg are( or 1. The actual values dfy andbg are unknown. The problem is to determine
whatb, andbg are by using the black box only once.

The terminology and the definition of the operatBiB 2% require explanation. In computation, we
say that an operation is a black box or an “oracle” if we have no access whatsoever to how the operation
is implemented. In a black box problem, we are promised that the black box implements an operation
from a specified set of operations. In the case of the parity problem, we know that the operation is
to add one of four possible parities (see below). The problem is to determine which parity is added
by using the black box in a network. Black box problems serve many purposes. One is to study the
differences between models of computation, just as we are about to do. In fact, black box problems
played a crucial role in the development of quantum algorithms by providing the first and most convincing
examples of the power of quantum computers [L4]. Some of these examples involve generalizations of
the parity problem. Another purpose of black box problems is to enable us to focus on what can be learned
from the “input/output” behavior of an operation without having to analyze its implementation. This is
useful because in many cases of interest, it is very difficult to exploit knowledge of the implementation
to determine a desirable property of the operation. A classical example is the well-known satisfiability
problem, in which we are given a classical circuit with one output bit and we need to determine whether
there is an input for which the outputis Instead of trying to analyze the circuit, one can look for and use
a general purpose black-box search algorithm to find the “satisfying” input.

In the definition of the effect cBB*8Y), the operation &” is addition modulo2, so1 & 1 = 0, and
all the other sums are as expected. As the state symbols now have a numeric meaning, we use the numbel
font for states. To see wh&B does, suppose that andbg are bothl. ThenBB adds (modul®) the
parity of the logical state iAB to the logical state of. The parity of a logical state i&if the number of
1'sis even and if it is odd. The action oBB for this example is given by:

BB"®Y|00),_[0). = [00), |0).
BB"®Y01) [0} = [01) [0@1)
= [01),11).
BB"®9|10) |1) = [10) |1 ®1)
= [10),10).
BB"®Y|11) 10) = [11) |0} (43)

The action of the black box is extended to superpositions by “linear extension”. This means that to apply
BB to a superposition of the logical states, simply apply it to each logical summand and add the results.
Different values ob, andbg correspond to different parities. For exampléyif= 1 andbg = 0, then the

parity of the state i\ is added to the state i@. In this sense, what is added is the parity of a subset of
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the two qubitsAB. Thus, one way of thinking about the problem is that we wish to find out which subset’s
parity the black box is using.

We can give an algorithm that solves the parity problem using each of the three methods for describing
quantum networks. Here is an algebraic description of a solutjparity "), given as a product of
guantum gates that involves one use of the black box. We defer the explanation of why this solution works
until after we show how to represent the algorithm pictorially using quantum networks.

gparity 9 = meas®H® meas Y HABB*BOHOnot©add “H® add ®H™add™.
(44)

The output of the algorithm is given by the classical outputs of the measurements o gwhith yields

ba, and qubitB, which yieldsbg. As is conventional, in writing products of linear operators, the order of
application in Eq44 is right to left, as in a product of matrices applied to a column vector. This order

of terms in a product is, however, counterintuitive, particularly for operations to be performed one after
the other. It is therefore convenient to use left to right notation, as is done in describing laser or radio-
frequency pulse sequences. One way to make it clear that left to right order is used involves putting dots
between gates as in the following version of E4.

qparity(ABC) = add® . H® .add® H® .add© .not'© H© BB"BY) HA meas™ H® meas®.
(45)

In this representation, the first operatiomiéd ™, the second i1 (the Hadamard gate on quij and
So on.

The algebraic specification of the algorithm as products of gates does not make it easy to see why the
algorithm works. It is also difficult to see which operations depend on each other. Such dependencies
are used to determine whether the operations can be “parallelized”. Quantum networks make these tasks
simpler. The quantum network for the above sequence is shown i&.Fig.
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FIG. 2: Quantum network for solving the parity problem. A quantum network has a (horizontal in this
case) line for each qubit. The line can be thought of as the time-line for the qubit and is shown in blue.
Each gate is drawn as a box, circle, or other element intercepting the lines of the qubits it acts on. In
this case, time runs from left to right. Each qubit’s time-line starts at the point where it is added. In this
example, the qubits’ time-lines end when they are measured, at which point a classical bit (brown time
line) containing the measurement outcome is introduced. The opelBois illustrated as a black box.

The numbers underneath the network refer to checkpoints used to explain how the network solves the
parity problem.

To understand how the quantum network of Eigolves the parity problem, we can follow the states
as the network is “executed” from left to right, using the indicated checkpoints. Using vector notation for
the states, at checkpoihthe state is

= ()= (5)= (o) (46)

where we used Kronecker product notation to denote the statesBandC, in this order. In the next
time step, the network involves applying Hadamard gatesI{Bdo A andB and anot gate (Eq9) to C.
At checkpoint2, this operation results in the state

(12 1/vV2 0
.= (1) (1) = (1) @
Next, a Hadamard gate is appliedd@pso that at checkpoirgd we have,
_ (V2 1/v2 1/v2
o= (1vz) e (ve) e (1ive) (48)

The next event involves applying the black box. To understand what happens, note that the effect of the
black box can be described as “conditional on each logical stad®pif the parity according td, and
bg is 1, then applynot to C” The current state of is such that ifnot is applied, only the sign changes:

not [ 1 /V2 (01 1/v/2
-1/v2) — {10 —1/V2
1/v2
(1) “9
Now AB is in a superposition of each of the logical states, and conditional on the logical state and the
(hidden) parity, the sign changes. As a result, although the st&teloés not change, a phase is “kicked
back” to AB. A generalization of this effect is at the heart of A. Kitaev’s version of P. Shor’'s quantum

factoring algorithm (Sec.10. At the next checkpoint, and after some arithmetic to check which logical
states change sign, we can write the state as

= ave) ® (ve)© (Le): (%0
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Notice that qubitsA andB are in orthogonal states for different valuesbgfbg. It suffices to apply the

Hadamard transform again foandB to get

= (1) e (15) o (

_1/\/5

Measurements ok andB now reveal the previously unknowiR andbg.

As can be seen, the visual representation of a quantum network eases the tasks of following what
happens. This is why it is used extensively for presenting basic subroutines and algorithms in quantum
computation. A guide to the commonly used network elements is given irBFig.

1/v/2 )

(51)

| Name | Gate | Symbols | Algebraic | Matrix |
If applied to existing qubit: 10 01
Add/preparaD— add {]o) (o], |o) (1]} (O 0 ) ( 0 0)
(operator mixture)
Measure meas | {o:[0) (o], 1:[1) (1|} ( (1) 8 > ( 8 ? >
D~ 0 1
Not or not, o, | |o){1| + [1){o| (1 0>
Hadamard -|l|- H e~loym/dg \/% (1 _1 )
Phase el S(eid’) ei0/2p—102¢/2 ( oid )
change
] 71¢/2
z-Rotation Zy e~i0=9/2 ( ié /2 )
Yo e (zfs o)) et )
: ir.0/2 cos(0/2)  —isin(0/2)
z-Rotation Xo e ( —isin(6/2)  cos(0/2)

21



S = O

B
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not or cnot
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e~02 0 0
A i B)g 2 0 e?2 9 0
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FIG. 3: Quantum network elements.

When designing or describing complicated algorithms for quantum computers, providing everything
in terms of quantum networks can become difficult, particularly when an important part of the algorithm
consists of computations that are best done on a classical computer. For example, a full description of
Shor’s algorithm for factoring whole numbers (see S&ct0) includes a significant amount of classical
preprocessing, which determines choices made in the quantum algorithm, and classical postprocessing,
which computes a factor from the measured result by a continued fraction algorithm. For such algorithms,
one can use a programming language similar to Pascal, BASIC or C enhanced with statements to access
guantum bits and to apply quantum operations. For algorithm design, computer scientists often use a
semi-formal language called “pseudocods&]. [With a simple extension called “quantum pseudocode”,
the algorithm for the parity problem can be written as follows:

BBPARITY(BB)

Input: Access to a quantum black b&B that acts on three qubits by adding a parity function of the
first two qubits to the third.

Output: The two bitsby andbg of the parity function.
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foreachi € {A,B, C}
Ta; 7 — |o)
C: Initialize three one-qubit registers "a; ', i = A, B, C. The corner bracket annota-
tion declares a; as a quantum register.
end
Tac — o,Tac”
foreachi € {A,B,C}
Tq; 17— Ha;”
end
l_a—l — BBI_a,_I
C: "a' refers to the three qubit register consisting of the "a;
foreachi € {A, B}
Tq; 17— Ha;”
b; — meas" a;!
end
return b, bg
end

Any classical programming language can be extended with statements to access and manipulate quan-
tum registers.

Now that we have looked at the quantum solution of the parity problem, let us consider the question
of the least number of black-box applications required by a classical algorithm: Each classical use of the
black box can only give us one bit of information. In particular, one use of the black box withdppgit
reveals only the parity aiaag according to the hidden parametégsandbg. Each use of the black box
can therefore only help us distinguish between two subsets of the four possible parities. At least two uses
of the black box are therefore necessary. Two uses are also sufficient: To determine which of the four
parities is involved, use the black box first with inputag = 10 and then with inputiaag = 01. As a
result of this argument, one can consider the parity problem as a simple example of a case in which there
is a more efficient quantum algorithm than is possible classically. However, it is worth noting that the
comparison is not entirely fair: A truly classical oracle answering parity questions or implementing the
black box on the states of classical bits is useless to a quantum algorithm. To take advantage of such an
algorithm it must be possible to use superpositions that are not implicitly collapsed. Collapse can happen
if the oracle makes a measurement or otherwise “remembers” the question that it was asked.

2.9 Resource Accounting

When trying to solve a problem using quantum information processing, an important issue is to determine
what physical resources are available and how much of each resource is needed for the solution. As
mentioned before, in classical information, the primary resources are bits and operations. The number of
bits used by an algorithm is called its “space” requirement. The number of operations used is called its
“time” requirement. If parallel computation is available, one can distinguish between the total number of
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operations (“work”) and the number of parallel steps (“time”).

When quantum information processing is used, the classical resources are still relevant for running
the computer that controls the quantum system and performs any pre- and post-processing tasks. The
main quantum resources are analogous to the classical ones: “quantum space” is the number of qubits
needed, and “quantum time” the number of quantum gates. Because it turns out that reset operations have
a thermodynamic cost, one can count irreversible quantum operations separately. This accounting of the
resource requirements of algorithms and of the minimum resources needed to solve problems forms the
foundations of quantum complexity theory.

As a simple example of resource accounting, consider the algorithm for the parity problem. No clas-
sical computation is required to decide which quantum gates to apply, or to determine the answer from
the measurement. The quantum network consists of a total of 11 quantum gates (inclueidd 'thend
meas’s operations) and one oracle call (the application of the black box). In the case of oracle problems,
one usually counts the number of oracle calls first, as we have done in discussing the algorithm. The
network is readily parallelized to reduce the time resource to 6 steps.

2.10 From Factoring to Phase Estimation

The publication of Shor's quantum algorithm for efficiently factoring numbé&rsjjwas the key event that
stimulated many theoretical and experimental investigations of quantum computation. One of the reasons
why this algorithm is so important is that the security of widely used public key cryptographic protocols
relies on the conjectured difficulty of factoring large numbers. An elementary overview of these protocols
and the quantum algorithm for breaking them is ][ Here, we outline the relationship between fac-
toring and the powerful technique of phase estimation. This relationship helps in understanding many of
the existing quantum algorithms and was first explained i, [notivated by Kitaev’s versionl[/] of the
factoring algorithm.

The factoring problem requires writing a whole numBéas a product of primes. (Primes are whole
numbers greater thanthat are divisible without remainder only Byand themselves.) Shor’s algorithm
solves this problem by reducing it to instances of the order-finding problem, which will be defined below.
The reduction is based on basic number theory and involves efficient classical computation. At the core of
Shor’s algorithm is a quantum algorithm that solves the order-finding problem efficiently. In this case, an
algorithm is considered efficient if it uses resources bounded by a polynomial in the number of digits of
N. For more information on the requisite number theory, see any textbook on number th&dryj]

We begin by showing that factoring reduces to order finding. The first observation is that to factor
a whole number it is sufficient to solve the factor-finding problem, whose statement is: Given a whole
numberN find a proper factor ofV, if one exists. A “factor” of N is a whole numbey that satisfies
N = fg for some whole numbeg. The factorf is “proper” if f # 1 and f # N. For example, if
N = 15, then3 and5 are its proper factors. For some numbers it is easy to find a proper factor. For
example, you can tell thaY is even from the least significant digit (in decimal or binary), in which @ase
is a proper factor (unles§ = 2, a prime). But many numbers are not so easy. As an example, you can try
to find a proper factor ofV = 149573 by hand. You can complete the factorization of a whole number
by recursively applying an algorithm for the factor-finding problem to all the proper factors found.

1
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Before we continue the reduction of factoring to order finding, we briefly explain modular arithmetic,
which both simplifies the discussion and is necessary to avoid computing with numbers that have expo-
nential numbers of digits. We say thatindb are “equal modulaV”, written asa = b mod N, if a — b
is divisible by N (without remainder). For examplg,= 18 mod 15 = 33 mod 15. Equality moduloN
is well-behaved with respect to addition and multiplication. That i, b mod N andc = d mod N,
thena + ¢ = b+ d mod N andac = bd mod N. For factoringN, we will be looking for whole numbers
a that are divisible by a proper factor of. If a has this property, then so does dnyith b = ¢ mod N.

We therefore perform all arithmetic “modulg”. One way to think about this is that we only use whole
numbers: that satisfy) < a < N — 1. We can implement an arithmetic operation moddldy first ap-
plying the operation in the usual way and then computing the remainder after divisign Bgr example,
to obtainab mod N, we first computeb. The unique: such thad < ¢ < N —1andc = ab mod N is the
remainder after division afb by N. Thusc is the result of multiplying: by b moduloN. Consistent with
this procedure, we can think of the expressiomod N as referring to the remainder ofafter division
by N.

The second observation in the reduction of factoring to order finding is that it is sufficient to find a
whole number- with the property that? — 1 is a multiple of N butr — 1 andr + 1 are not. Using the
language of modular arithmetic, the property is expressed as1 mod N butr # 1 mod N andr #

—1 mod N. Becausd mod N and—1 mod N are the obvious square rootslofnod N, we say that is

a “non-trivial square root of unity” (modul®’). For such am, one can write?—1 = (r—1)(r+1) = mN

for some whole number.. This implies that every prime factgrof N divides either(r — 1) or (r + 1)

so that eithefr — 1) or (r + 1) is or shares a factor witlv. Suppose that — 1 is or shares such a factor.
Because: — 1 is not a multiple ofV, the greatest common divisor of— 1 and N is a proper factor of

N. Since there exists an efficient classical algorithm (the “Euclidean algorithm”) for finding the greatest
common divisor, we can easily find the desired proper factor.

The examples oV = 15 and/N = 21 serve to illustrate the key features of the algorithm. Kot 15,
possible choices for arer = 4 (4> — 1 = 1x*15)andr = 11 (112 — 1 = 120 = 8 * 15). For the first
choice, the proper factors emerge immediatdly: 1 = 3,4 + 1 = 5. For the second, it is necessary to
determine the greatest common divisors. Let(gcg) stand for the greatest common divisor:oéndy.

The proper factors are g€l — 1, 15) = ged(10,15) = 5 and ged11 + 1,15) = ged12,15) = 3. For
N = 21, one can take = 8, as8?> — 1 = 63 = 3 = 21. In this caseg8 — 1 = 7 is a proper factor and
gcd8 + 1,21) = 3 is another.

For N even or a power of a prime it is not always possible to find a non-trivial square root of unity.
Because both of these cases can be handled efficiently by known classical algorithms, we can exclude
them. In every other case, such numbeexist. One way to find such anis to start from any whole
numberg with 1 < ¢ < N. If gcd(g, N) = 1, then according to a basic result in number theory there
is a smallest whole numbér > 1 such thaiy* — 1 = 0 mod N. The numbel is called the “order” of
g moduloN. If kis even, say: = 21, then(¢')? = 1 mod N, soq' is a (possibly trivial) square root
of unity. For the example oN = 15, we can tryg = 2. The order of2 modulo15 is 4, which gives
r = 22 = 4, the first of the two choices in the previous paragraph. Foe 21, again withg = 2, the
orderis6: 26 —1 = 63 = 3 21. Thus,r = 23 = 8. We can also try = 11, in which case with foresight it
turns out that 1¢ — 1 is divisible by21. A possible problem appears, namely, the powérhat we want
to compute are extremely large. But modular arithmetic can be used to avoid this problem. For example,
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to find the order ofl 1 modulo21 by a direct search, we can perform the following computation:

112 = 121 = 5%214+16 = 16 mod 21
112 = 11%112 = 11 * 16 mod 21 = 11 % (—5) mod 21
= —5bmod 21l = —-3%21+8mod21 = 8mod?21
114 = 11%x11% = 11*8mod21 = 4%21+4mod21 = 4mod?21
11° = 11x11* = 11*4mod 21 = 2 mod 21
115 = 11%11° = 11*2mod 21 = 1 mod 21
(52)

In general such a direct search for the ordeg afodulo N is very inefficient, but as we will see, there is
an efficient quantum algorithm that can determine the order.
A factor-finding algorithm based on the above observations is the following:

FACTORFIND(N)

Input: A positive, non-prime whole numbéy.

Output: A proper factorf of N, thatisf is a whole number such that< f < N andN = fg for some
whole numbeyg.

1. If N iseven, returry = 2.

2. If N = p* for p prime, returrp.

3. Randomly pickl < ¢ < N — 1.
3.a. If f =gcdg, N) > 1returnf.

4. Determine the order of ¢ modulo/N using the quantum order-finding algorithm.
4.a. If kis not even, repeat at step 3.

5. Write k = 2 and determine = ¢’ mod N with1 < r < N.

5a.1f 1< f=gcdr—1,N) < N, returnf.
5b.If1< f=gcdr+1,N)< N, returnf.
5.c. If we failed to find a proper factor, repeat at step 3.

The efficiency of this algorithm depends on the probability that a randomly choaestep 3 results
in finding a factor. By using an analysis of the group of numbettsat satisfy gcéy, N) = 1, it can be
shown that this probability is sufficiently large.

The main problem that remains to be solved is that of finding the ordgmafd N. A direct search
for the order ofy mod NNV involves computing the sequence

l-¢—¢modN —...— ¢ 'mod N - 1=¢"mod N. (53)

This sequence can be conveniently visualized as a cycle whose length is the ardes®fV (Fig. 4).
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The cycle ofg mod N The cycle of8 mod 15

LN
S N

FIG. 4: Multiplicative cycles of; mod N. Each number on a cycle is obtained from the previous one by
multiplication byg mod N.

To introduce the quantum algorithm, we first associate the logical quantum|§atgs, ... |N — 1)
with the number$,1,..., N — 1. The mapf which takes each number on the cycle to the next number
along the cycle is given by(z) = gz mod N. Forq satisfying gcdg, N) = 1, the mapf permutes not
only the numbers on the cycle, but all the numbers modiloAs a result, the linear operatgrdefined
by flz) = |f(z)) = |qz mod N) is unitary. The quantum algorithm deduces the length of the cycle
for ¢ by making measurements to determine properties of the actigfmofsuperpositions of the states
|¢° mod N). To illustrate the basic ideas, we work out the exampl&/of 15 andg = 8. The action of
f on the state$l), |8), |4), |2) in the cycle of8 mod 15 is completely determined by the eigenstates and
eigenvalues off. For cyclicly acting permutations, a basis of eigenstates is given by the “Fourier” basis
for the space spanned by the states in a cycle. For the cycle of interest, the Fourier basis consists of the
states

o) = 3(ID+ 18)+4)+ |2)
1) = S(ID+il8)—[4)—i[2) (54)
v} = (11— I8)+[4)— [2)
) = 3(I11)—il8)—|4)+i]2)

The phases of thith state of the cycle occurring in the sum fia,,) can be written ag™. It follows that
Flm) = i™|¢n), thatis, the eigenvalue gffor |1,,,) isi™. Note that in the complex numbers, the powers
of 4 are all the fourth roots of unity. In general, the Fourier basis for the cycles |¢' mod N) —
consists of the statds,,) = >, w'™|¢' mod N), wherew = ¢>7/* is a primitivek’th root of unity. (The
complex number: is a primitive k’th root of unity if £ is the smallest whole numbér > 0 such that
x* = 1. For example, both-1 and: are fourth roots of unity, but onlyis primitive.)
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It is, of course, possible to express the logical sfajeusing the Fourier basis:

1) = 5 (1e) + 1) + [oa) + 12)). (55)

The key step of the quantum algorithm for order finding consists of a measurement to estimate a random
eigenvalue off whose associated eigenstate occurs in the expressiph)fior terms of the Fourier basis.

If the eigenvalue found is a primitivigth root of unity, we infer that the cycle length is divisible kyand

check (using a classical algorithm) whether this is the order & the example, the random eigenvalues

arel (the only primitive first root of unity); and—i (primitive fourth roots of unity) and-1 (the primitive

second root of unity). The order is found if the random eigenvalue is a primitive fourth root of unity, which
happens with probability /2 in this case.

The quantum algorithm for obtaining an eigenvalue is called the “phase estimation” algorithm. It
exploits a more general version of the phase kick back we encountered in the solution of the parity problem.
The phase kick back transfers the eigenvalue of an eigenstatemf Fourier basis on a number of
additional qubits called “helper” or “ancilla” qubits. Which Fourier state results is then determined by
a subroutine called the “measured quantum Fourier transform”. We introduce these elements in the next
paragraphs. Their combination for solving the general order-finding problem is shown # Fig.

Fig. 5 shows how to kick back the eigenvalue of an eigensta;éuzﬁng a network implementing the
controlled+f operation.

% (|o) + Il)) * % <|O) + Z.mll))

V) [ ()

FIG. 5: Phase estimation with one qubit. The input is a product state on one ancilla qubit and on a second
quantum system as shown. The statg ) on the second system is an eigenstat¢.oFor the example

under discussion (see Egy), the eigenvalue i&". A controlled- operation is applied to the input, that is,

f is applied to the second system conditional onfor the ancilla qubit. In the bra-ket notation, the total
operation can be written ds) (o| + |1) (1| f (system labels have been omitted). Sifiacchanges only the

phase of its input, the second system is unchanged, but the phase modifies the ancilla qubit’s superposition

as shown.

The network in Fig5 can be used with inpyt ) on the second system. From E¢.and the superposition
principle, it follows that the output correlates the different phase kickback states with the four eigenvectors
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|.). Thatis, the network implements the following transformation:

- (e +(|i0)ll)), -
+|n +(lo) + i1 1
2f(|°)+|l)) 1) — s T (Jo) + 2[1)) [¢) (56)
T 1) T (Joy + #11) [4s)

The hope is that a measurement of the first qubit can distinguish between the four possible phases that can
be kicked back. However, because the four states are not mutually orthogonal, they are not unambiguously
distinguishable by a measurement. To solve this problem, we use a second qubit and a cofttrasled-
shown in Fig 6.

|O) # iomlo)
1 +[1) U, ) 1 +i1"|1)
2 +]2) 2 +i*"|2)

_|_|3) # —|—z'3m|3)

o) W 2@ 10

FIG. 6: Phase estimation with two qubits. Using two qubits ensures distinguishability of the eigenvalues
of f for the stated+,,). The states of the input qubits are used to represent the number$ t@min

binary. The most significant bit (the “two™s digit in the binary representation) is carried by the top qubit.
That is, we make the following identificatiof0) = |oo), |1) = |o1), |2) = |10) and|3) = |11). It
follows that the network has the effect of applyifij conditional on the input qubits’ logical state being

|[m).

The four possible statds.,,,) that appear on the ancilla qubits in the network of FEigre the Fourier
basis for the cycl® — 1 — 2 — 3 — 0 and are therefore orthonormal. If we apply the network of Eig.
with |1) instead of{,,) at the lower input, the output correlates the f¢aiy,) in the superposition with
the |u.,, ), which makes the information about the eigenvalueg afailable in the Fourier basis of the two
ancilla qubits. This approach has the advantage that the states are known, whereas in the Fourier basis for
the cycle ofg mod N, the states depend on the numbers in the cycle, which are not known in advance
(except in very simple cases, such as the example we are working with).
To learn one of the eigenvalues ffthe last step is to make a “measurement in the Fourier basis”. For
one qubit representing the binary numbeend1, the Fourier basis is; (|0) + [1)) and 5 ([0) — [1)),
which is constructed as discussed after &.but using the square root of unity= —1 mstead of the
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fourth rooti. To make a measurement that determines which of the two basis vectors is present, it suffices
to apply the Hadamard transfolhand make a standard measurement, just as we did twice in the network
of Fig. 2. A more complicated network works with two qubits representing the binary numberg)ftom

3. Such a network is shown in Fig.

u2*a1+ao)

FIG. 7. The measured quantum Fourier transforir] pn two qubits representing the numbeérs, 2, 3.

If the input is one of the Fourier statps, ), where the binary digits of are determined by = 2x*a; + ay,

then the measurement outcomes@yanda,, as shown. The numbers under the network are checkpoints
used for analyzing the network.

To see how the network extracts the bits in the indekuQ}, we can follow the states as the network is
executed. The input state at checkpdim Fig. 7 is given by

Z’O*alo) i(0*21+0*20)(a1*21+a0*20) IOO)
1 [ itee|1) 1 [ (@2 12 (@12 +a0x2) | 1)
|1) = |u.) = 3 1i%%|2) -3 _H'(l*?l+0*20)(a1*21+a0*20)|10) ' (57)
+Z~3*a|3) _|_Z-(1*21+1*20)(a1*21+ao*20)Ill)

In the last sum, the relevant numbers have been fully expanded in terms of their binary digits to give a
flavor of the general principles underlying the measured Fourier transform. The next step of the network
applies a Hadamard gate to the qubit carrying the most significant digit. To understand how it succeeds
in extractingayg, the least significant bit af, let b with binary digitsb, andb, represent one of the logical
states of the two qubits. As before, the most significank;bis represented by the top/first qubit that the

first Hadamard gate is applied to. The phasé¢bpfin Eq. 57 is given byi(br+2'+box2%)(a1+2"+a0x2") - Next,

we determine how this phase depend$on
Z'(bl*21+b0*20)(a1*21+a0*20) ibl*Ql*(al*Ql—l—ao*Qo) ibo*Qo*(a1*21+a0*20)

Z»bl *aq*22 ibl xag*x2! ibo ¥20% (a1 %21 +ap*2°)
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. . . 0 1 0
(24)171*(11 (22)b1*a0 Zb()>l<2 *(a1*2 “+ag*2 )

(_1)b1*a0 ibo*Qo*(al*Ql"F@O*zo)' (58)

It follows that if aq = 0, the phase does not dependignand ifaq = 1, it changes sign with;. This sign
change can be detected by performing the Hadamard transform and measuring, as can be seen explicitly
by computing the state after the Hadamard transform at checkpioint

1
|¢2) - (Z-O*QO*(a1*21+ao*20)Iao)lo) + Z-1*20*(a1*21+a0*20)|a0)|l)>

V2
1
|ao)ﬁ

The phases still show a dependenceigria the termgtox2’+a0x2° — ;boao The purpose of the phase shift
gate conditioned on the measurement outcome is to remove that dependence. The result is the following
state on the remaining qubit at checkpdnt

(iO*QO*(a1*21+a0*20)|O) + il*QO*(al*Zl-f—ao*QO) |l)) . (59)

l6s) = %<,l>0*20*a1*21|0)+Z-1*20*a1*21|l)>
S 1 GUARIDEICIREIBY
= 55 () ). (60)

The final Hadamard transform followed by a measurement therefore results in thedstdesired.

The elements that we used to determine the ord8mobdulo15 can be combined and generalized to
determine the order of anymoduloN with gcd(¢, N) = 1. The general network is shown in Fig. Two
features of the generalization are not apparent from the example. First, in order for the quantum network
to be efficient, an efficient implementation of the controljéd operation is required. To obtain such an
implementation, first note that to calculaﬂél(x) = ¢z mod N it suffices to square repeatedly modulo
N using (q2m)2 mod N = ¢ mod N until we obtaing® mod N. The result is then multiplied by
x mod N. This computation is efficient. For any givenit can be converted to an efficient network
consisting of Toffoli and controlled-not gates acting on the binary representatioriTie conversion can
be accomplished with standard techniques from the theory of reversible classical computation. The result
is an efficient network foyf2l, Basic network theory can then be used to implement the controlled version
of this operation?1].

The understand the second feature, note that we were lucky that the ogdmodilo15 was a power
of 2, which nicely matched the measured Fourier transform we constructed on two qubits. The measured
Fourier transform onmn ancilla qubits can detect exactly only eigenvalues that are powers @f'tte
root of unity e™™/2" . The phase kicked back by the controlled operations correspondk'tio mot of
unity. Given a Fourier state on the cyclepfnod N, the resulting state on the ancilla qubits has phases
that go as powers of &th root of unity. Fortunately, the ancilla’s Fourier basis is such that the measured
Fourier transform picks up primarily those basis states whose generating phase is close to the kick back
phase. Thus we are likely to detect a neathy= ¢''™/2" " It is still necessary to infer (a divisor of)
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from knowledge of such an. Since we know that the ordéris bounded byV, the number of possible
phases kicked back that are near the measurisdimited. To ensure that there is only one possible such
phase, it is necessary to choesesuch tha™ > N2. See also the caption of Fi§.
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3 Advantages of Quantum Information

The notion of quantum information as explained in this primer was established in the 1990s. It emerged
from research focused on understanding how physics affects our capabilities to communicate and to pro-
cess information. The recognition that usable types of information need to be physically realizable was
repeatedly emphasized by R. Landauer who proclaimed that “information is physi¢al’Beginning

in the 1960s, R. Landauer studied the thermodynamic cost of irreversible operations in computhtion [

C. Bennett showed that by using reversible computation, this cost can be aveifiddrpitations of mea-
surement in quantum mechanics were investigated early by researchers such as J. von Neymapn [

and later by A. Holevo{ 7] and C. Helstrom7&]. A. Holevo introduced the idea of quantum communica-

tion channels and found bounds on their capacity for transmitting classical informafjoiritially, most

work focused on determining the physical limitations placed on classical information processing. The fact
that pairs of two-level systems can have correlations not possible for classical systems was proven by
J. Bell [3(] in 1964. Subsequently, indications that quantum mechanics offers advantages to information
processing came from S. Wiesner’s studies of cryptographic applicafipnglie late 1960s. S. Wiesner’s

work was not recognized until the 1980s, when C. Bennett, G. Brassard, S. Breidbart and S. Wjesner [
introduced the idea of quantum cryptography, which can be used to communicate in secret.

Initially, the term “quantum computation” was mostly used to refer to classical computers realized
using quantum mechanical systems. In the 1980s, P. Benidif R. Feynman ] and Y. I. Manin [37]
introduced the idea of a quantum computer based on quantum information. They noted that the apparent
exponential complexity of simulating quantum mechanics on a classical computer might be overcome if
we could use a computer that is itself based on quantum mechanics. A formal model of quantum Tur-
ing machines was soon defined by D. Deutséf],[who later also introduced gquantum networks][

D. Deutsch and R. JozsaT] were the first to introduce a black box problem that can be solved determin-
istically on a quantum computer in fewer steps than on a classical computer.

In spite of suggestions that it could lead to large efficiency improvements in simulating physics, quan-
tum information processing was still largely an academic subject. Based on work by E. Bernstein and
U. Vazirani [L3] that formalized quantum complexity theory, D. Simor] showed that, for black-box
problems, quantum computers can be exponentially more efficient than classical deterministic or proba-
bilistic computers, giving the first indication of a strong advantage for quantum information processing. It
was Shor’s algorithm for factoring large whole numbetss] that finally convinced a larger community
that quantum information was more than just a tool for realizing classical computers. This change in at-
titudes was in no small part due to the fact that the security of commonly used cryptographic protocols is
based on the hardness of factoring.

At that point, it was still generally believed that the fragility of quantum states made it unlikely for
reasonably large quantum computers to be realized in practice. But the discovery by:§hand
A. Steane 7] that quantum error-correction was possible soon changed that view, def@f an in-
troductory overview.

As a result of the recognition of the utility and realizability of quantum information, the science of
guantum information processing is a rapidly growing field. As quantum information becomes increasingly
accessible by technology, its usefulness will be more apparent. The next few sections briefly discuss what
we currently know about applications of quantum information processing. A useful reference text on
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guantum computation and information with historical notes is the book by M. Nielsen and I. Chiihng [

3.1 Quantum Algorithms

Shor’s factoring algorithm, which precipitated much of the current work in quantum information pro-
cessing, is based on a quantum realization of the fast Fourier transform. The most powerful version of
this technique is now represented by the phase-estimation algorithm of A. Kitdeaqd formalized by

R. Cleveet al.[16]. See Sect2.10for an explanation of the factoring algorithm and phase estimation. The
best known application of quantum factoring is to cryptanalysis, where it can be used to efficiently break
the currently used public-key cryptographic codes. Whether there are any constructive applications of
guantum factoring and its generalizations remains to be determined. For users of public key cryptography,
a crucial question is: “How long can public key codes based on factoring continue to be used safely?”
To attempt to answer this question, one can note that to break a code with a typical keylsige loits
requires more thaB000 qubits andl0® quantum gates, which is well out of reach of current technology.
However, it is conceivable that a recording of encrypted information transmitted in 2000 can be broken in
the next “few” decades.

Shor’s quantum factoring algorithm was not the first with a significant advantage over classical algo-
rithms. The first quantum algorithms to be proposed with this property were algorithms for simulating
guantum mechanical systems. These algorithms simulate the evolution of a reasonably large number of
interacting quantum patrticles, for example, the electrons and nuclei in a molecule. The algorithms’ outputs
are what would be measurable physical quantities of the system being simulated. The known methods for
obtaining these quantities on classical computers scale exponentially with the number of particles, except
in special cases.

The idea of using quantum computers for simulating quantum physics spurred the work that eventually
lead to the quantum factoring algorithm. However, that idea did not have the broad scientific impact
that the quantum factoring algorithm had. One reason is that because of its cryptographic applications,
factoring is a heavily studied problem in theoretical computer science and cryptography. Because so
many people have tried to design efficient algorithms for factoring and failed, the general belief that
factoring is hard for classical computers has a lot of credibility. In contrast, the problem of quantum
physics simulation has no simple formulation as an algorithmic problem suitable for study in theoretical
computer science. Furthermore, many researchers still believe that the physically relevant questions can be
answered with efficient classical algorithms, requiring only more cleverness on the part of the algorithms
designers. Another reason for the lack of impact is that many of the fundamental physical quantities
of interest are not known to be efficiently accessible even on quantum computers. For example, one of
the first questions about a physical system with a given Hamiltonian (energy observable), is: What is
the ground state energy? It is known that the ability to efficiently answer this question for physically
reasonable Hamiltonians leads to efficient algorithms for hard problems such as the traveling salesman or
the scheduling problems. In spite of occasional claims to the contrary, an efficient quantum solution to
these problems is widely considered unlikely.

Most quantum algorithms for physics simulations are based on a direct emulation of the evolution of
a quantum mechanical system. The focus of the original proposals by Feynman and others was on how
to implement the emulation using a suitable formulation of general-purpose quantum computers. After
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such computers were formalized by Deutsch, the implementation of the emulation was generalized and
refined by S. Lloyd 9], Wiesner [\(] and C. Zalka {.1]. The ability to emulate the evolution of quan-

tum systems is actually widely used by classical “Monte-Carlo” algorithms for simulating physics, where
the states amplitudes are, in effect, represented by expectations of random variables that are computed
during the simulation. As in the case of the quantum algorithms for physics emulation, the Monte-Carlo
algorithms efficiently evolve the representation of the quantum system. The inefficiency of the classical
algorithm arises only in determining a physical quantity of interest. In the case of Monte-Carlo algorithms,
the “measurement” of a physical quantity suffers from the so-called “sign problem”, often resulting in ex-
ponentially large, random errors that can be reduced only by repeating the computation extremely many
times. In contrast, the quantum algorithms for emulation can determine many (but not all) of the in-
teresting physical quantities with polynomially bounded statistical errors. How to efficiently implement
measurements of these quantities has been the topic of more recent work in this area, much of which is
based on variants of the phase estimation algorithrm/3, 44, 45, 46].

Although several researchers have suggested that there are interesting quantum physics simulations
that can be implemented with well below 100 qubits, one of the interesting problems in this area of
research is to come up with a specific simulation algorithm that uses small numbers of qubits and quantum
gates, and that computes an interesting physical quantity not easily obtainable using available classical
computers.

Another notable algorithm for quantum computers, unstructured quantum search, was described by
L. Grover [5]. Given is a black box that computes a binary functipon inputsz with 0 < = < N.

The functionf has the property that there is a unique inpdior which f(a) = 1. The standard quantum
version of this black box implements the transformatjdm)|b) = |2)|b & f(z)), whereb is a bit and

b @ f(z) is computed modul@. Unstructured quantum search findgjuadratically faster, that is, in

time of orderN'/2, than the best classical black-box search, which requires time of dfd&he context

for this algorithm is the famou® # N P conjecture, which is captured by the following algorithmic
problem: Given is a classical circuit that computes an output. Is there an input to the circuit for which
the circuit’s output is? Such an input is called a “satisfying” input or “assignment”. For any given input,

it is easy to check the output, but an efficient algorithm that finds a satisfying input is conjectured to be
impossible. This is thé® # N P conjecture. Generalizations of Grover’s search algorithm (“amplitude
amplification” [47]) can be used to find satisfying inputs faster than the naive classical search, which
tries each possible input in some, possibly random, order. It is worth noting, howoever, that if sufficient
classical parallelism is available, quantum search loses many of its advantages.

The three algorithms just described capture essentially all the known algorithmic advantages of quan-
tum computers. Almost all algorithms that have been described are applications of phase estimation or of
amplitude amplification. These algorithms well justify developing special purpose quantum information
processing technology. Will general purpose quantum computers be useful? More specifically, what other
algorithmic advantages do quantum computers have?

3.2 Quantum Communication

Quantum communication is an area in which quantum information has proven (rather than conjectured)
advantages. The best known application is quantum cryptography, whereby two parties, Alice and Bob,
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can generate a secret key using a quantum communication channel (for example, photons transmitted
in optical fiber) and an authenticated classical channel (for example, a telephone line). Any attempt at
learning the key by eavesdropping is detected. A quantum protocol for generating a secret key is called
a “quantum key exchange” protocol. There are no equally secure means for generating a secret key by
using only classical deterministic channels. Few quantum operations are needed to implement quantum
key exchange, and as a result there are working prototype systeém®] 50]. To overcome the distance
limitations (tens of kilometers) of current technology requires the use of quantum error-correction and
hence more demanding quantum technology.

Quantum key exchange is one of an increasing number of multi-party problems that can be solved more
efficiently with quantum information. The area of research concerned with how several parties at different
locations can solve problems while minimizing communication resources is called “communication com-
plexity”. For quantum communication complexity (R. Cleve and H. Burhnidf)[ the communication
resources include either shared entangled qubits or a means for transmitting quantum bits. A seminal paper
by Burhman, Cleve and W. Van Dariad] shows how the non-classical correlations present in maximally
entangled states lead to protocols based on such states that are more efficient than any classical determin
istic or probabilistic protocol achieving the same goal. R. Ra $howed that there is an exponential
improvement in communication resources for a problem in which Alice and Bob have to answer a question
about the relationship between a vector known to Alice and a matrix known to Bob. Although this problem
is artificial, it suggests that there are potentially useful advantages to be gained from quantum information
in this setting.

3.3 Quantum Control

According to G. Moore’s law of semiconductor technology, the size of transistors is decreasing exponen-
tially, by a factor of about8 every year. If this trend continues, then over the next few decades devices
will inevitably be built whose behavior will be primarily quantum mechanical. For the purpose of classical
computation, the goal is to remove the quantum behavior and stabilize classical information. But quantum
information offers an alternative: It is possible to directly use the quantum effects to advantage. Whether
or not this advantage is useful (and we believe it is), the ideas of quantum information can be used to
systematically understand and control quantum mechanical systems.

The decreasing size of semiconductor components is a strong motivation to strive for better under-
standing the behavior of condensed matter quantum mechanical systems. But there is no reason to wait for
Moore’s law: There are a rapidly increasing number of experimental systems in which quantum mechan-
ical effects are being used and investigated. Examples include many optical devices (lasers, microwave
cavities, entangled photon pairs), nuclear magnetic resonance with molecules or in solid state, trapped ion
or atom systems, Rydberg atoms, superconducting devices (Josephson junctions, SQUIDs) and spintronics
(electron spins in semiconductor devices). Many of these systems are being considered as candidates for
realizing quantum information processing. Yet, regardless of the future of quantum information process-
ing, there is ample motivation for studying these systems.
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3.4 Outlook

The science of quantum information processing is promising to have a significant impact on how we
process information, solve algorithmic problems, engineer nano-scale devices and model fundamental
physics. It is already changing the way we understand and control matter at the atomic scale, making
the quantum world more familiar, accessible and understandable. Whether or not we do most of our
everyday computations by using the classical model, it is likely that the physical devices that support these
computations will exploit quantum mechanics and integrate the ideas and tools that have been developed
for quantum information processing.
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4 Glossary

Algorithm. A set of instructions to be executed by a computing device. What instructions are available
depends on the computing device. Typically, instructions include commands for manipulating the
contents of memory and means for repeating blocks of instructions indefinitely or until a desired
condition is met.

Amplitude. A quantum system with a chosen orthonormal basis of “logical” stijesan be in any
superpositiony _, a;|i) of these states, whefe), |a;|> = 1. In such a superposition, the complex
numbersy; are called the amplitudes. Note that the amplitudes depend on the chosen basis.

Ancillas. Helper systems used to assist in a computation involving other information systems.

Bell basis. For two qubitsA and B, the Bell basis consists of the four sta@éﬂoo)AB + |11)AB) and
75 (lo1),, £ ]10),,)-

Bell states. The members of the Bell basis.

Bit. The basic unit of deterministic information. It is a system that can be in one of two possible states,
andi.

Bit sequence. A way of combining bits into a larger system whose constituent bits are in a specific order.

Bit string. A sequence 08’s and1’s that represents a state of a bit sequence. Bit strings are the words of
a binary alphabet.

Black box. A computational operation whose implementation is unknown. Typically, a black box imple-
ments one of a restricted set of operations, and the goal is to determine which of these operations
it implements by using it with different inputs. Each use of the black box is called a “query”. The
smallest number of queries required to determine the operation is called the “query complexity” of
the restricted set. Determining the query complexity of sets of operations is an important problem
area of computational complexity.

Bloch sphere. The set of pure states of a qubit represented as points on the surface of the unit sphere in
three dimensions.

Bra. A state expression of the forfi|, which is considered to be the conjugate transpose of the ket
expressiony).

Bra-ket notation. A way of denoting states and operators of quantum systems with kets (for example,
|+/)) and bras (for exampldg|).

Circuit. A combination of gates to be applied to information units in a prescribed order. To draw circuits,
one often uses a convention for connecting and depicting gates. See also “network”.

Circuit complexity. The circuit complexity of an operation on a fixed number of information units is the
smallest number of gates required to implement the operation.

Classical information. The type of information based on bits and bit strings and more generally on words
formed from finite alphabets. This is the information used for communication between people. Clas-
sical information can refer to deterministic or probabilistic information, depending on the context.

Computation. The execution of the instructions provided by an algorithm.

Computational states. See the entry for “logical states”.

Computer. A device that processes information.

Density matrix or operator. A representation of pure and mixed states without redundancy. For a pure
state|), the corresponding density operatof:ig (v’|. A general density operator is a probabilistic
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combinationd . A;|¢;) (¢, with >~ A, = 1.

Deterministic information. The type of information that is based on bits and bit strings. Deterministic
information is classical, but it explicitly excludes probabilistic information.

Distinguishable states.In quantum mechanics, two states are considered distinguishable if they are or-
thogonal. In this case, a measurement exists that is guaranteed to determine which of the two states
a systemi s in.

Efficient computation. A computation is efficient if it requires at most polynomially many resources as
a function of input size. For example, if the computation returns the v&lugon inputz, where
x is a bit string, then it is efficient if there exists a powesuch that the number of computational
steps used to obtaif{x) is bounded byz|*, where|z| is the length (number of bits) of.

Entanglement. A non-classical correlation between two quantum systems most strongly exhibited by the
maximally entangled states such as the Bell states for two qubits, and considered to be absent in
mixtures of product states (which are called “separable” states). Often states that are not separable
are considered to be entangled. However, nearly separable states do not exhibit all the features of
maximally entangled states. As a result, studies of different types of entanglement are an important
component of quantum information theory.

Gate. An operation applied to information for the purpose of information processing.

Global phase. Two quantum states are indistinguishable if they differ only by a global phase. That is,
|1/} andei?|y) are in essence the same state. The global phase difference is thecfactohe
equivalence of the two states is apparent from the fact that their density matrices are the same.

Hilbert space. An n-dimensional Hilbert space consists of all complegtimensional vectors. A defining
operation in a Hilbert space is the inner product. If the vectors are thought of as column vectors,
then the inner produdtr, y) of » andy is obtained by forming the conjugate transpe$ef » and
calculating(x,y) = xTy. The inner product induces the usual squared noetin= (z, z).

Information. Something that can be recorded, communicated, and computed with. Information is fun-
gible; that is, its meaning can be identified regardless of the particulars of the physical realization.
Thus, information in one realization (such as ink on a sheet of paper) can be easily transferred to
another (for example, spoken words). Types of information include deterministic, probabilistic and
guantum information. Each type is characterized by “information units”, which are abstract systems
whose states represent the simplest information of each type. The information units define the “nat-
ural” representation of the information. For deterministic information the information unit is the
bit, whose states are symbolized &wnd1. Information units can be put together to form larger
systems and can be processed with basic operations acting on a small number of them at a time.

Inner product. The defining operation of a Hilbert space. In a finite dimensional Hilbert space with a
chosen orthonormal bas{s; : 1 < i < n}, the inner product of two vectors = ) . x;e; and
y = >, yie; is given by 7,y;. In the standard column representation of the two vectors, this
is the number obtained by computing the product of the conjugate transpossittf . For real
vectors, this agrees with the usual “dot” product. The inner productmidy is often written in the
form (z, y). Pure quantum states are unit vectors in a Hilbert spag¢e) Hnd|:) are two quantum
states expressed in the ket-bra notation, there inner product is givgaVy|v) = (¢]v).

Ket. A state expression of the forfn)) representing a quantum state. Usudtly is thought of as a
superposition of members of a logical state bggis One way to think about the notation is to
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consider the two symbolq™and “)” as delimiters denoting a quantum system ands a symbol
representing a state in a standard Hilbert space. The combirjatjois the state of the quantum
system associated within the standard Hilbert space via a fixed isomorphism. In other words, one
can think ofy) < |¢) as an identification of the quantum system'’s state space with the standard
Hilbert space.

Linear extension of an operator. The unique linear operator that implements a map defined on a basis.
Typically, we define an operatdf on a quantum system only on the logical stdtes|:) — ;).

The linear extension is defined BY(> , a;|i)) = >, as|y).

Logical states. For quantum systems used in information processing, the logical states are a fixed or-
thonormal basis of pure states. By convention, the logical basis for qubits consjsjsanfd |1).

For larger dimensional quantum systems, the logical basis is often indexed by the whole numbers,
[0}, ]1),]2),.... The logical basis is often also called the “computational” basis, or sometimes, the
“classical” basis.

Measurement. The process used to extract classical information from a quantum system. A general
projective measurement is defined by a set of projed®estisfying) . P, = 1andP,P; = 6;; F;.

Given the quantum staje’), the outcome of a measurement with the{geg, is one of the classical
indeces associated with a projectd?;. The index: is the measurement outcome. The probability
of outcomei is p; = | P;|¢;)|*, and given outcomg the quantum state “collapses” i) /\/p:.

Mixture. A probabilistic combination of pure states of a quantum system. Mixtures can be represented
without redundancy with density operators. Thus a mixture is of the fprp\;|vy;) (5|, with
A > 0,> ", A = 1 being the probabilities of the statps ). This expression for mixtures defines the
set of density operators, which can also be characterized as the set of opesatsfying t{p) = 1
and for all|v), (¥|p|v) > 0 (“positive semidefinite operator”).

Network. In the context of information processing, a network is a sequence of gates applied to specified
information units. We visualize networks by drawing horizontal lines to denote the time line of an
information unit. The gates are represented by graphical elements that intercept the lines at specific
points. A realization of the network requires applying the gates to the information units in the
specified order (left to right).

Operator. A function that transforms the states of a system. Operators may be restricted depending on
the system’s properties. For example, in talking about operators acting on quantum systems, one
always assumes that they are linear.

Oracle. An information processing operation that can be applied. A use of the oracle is called a “query”.
In the oracle model of computation, a standard model is extended to include the ability to query
an oracle. Each oracle query is assumed to take one time unit. Queries can reduce the resources
required for solving problems. Usually, the oracle implements a function or solves a problem not
efficiently implementable by the model without the oracle. Oracle models are used to compare the
power of two models of computation when the oracle can be defined for both models. For example,
in 1994, D. Simon showed that quantum computers with a specific afactauld efficiently solve
a problem that had no efficient solution on classical computers with access to the classical version
of 0. At the time, this result was considered to be the strongest evidence for an exponential gap in
power between classical and quantum computers.

Overlap. The inner product between two quantum states.
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Pauli operators. The Hermitian matrices,, o,, 0. acting on qubits, which are two-level quantum sys-
tems. They are defined in EG2. It is often convenient to consider the identity operator to be
included in the set of Pauli operators.

Polynomial resources.To say that an algorithm computing the functigfi), wherexz is a bit string,
uses polynomial resources (in orther words, “is efficient”) means that the number of steps required
to computef (z) is bounded byz|* for some fixedk. Here|x| denotes the length of the bit string

Probabilistic bit. The basic unit of probabilistic information. It is a system whose state space consists of
all probability distributions over the two states of a bit. The states can be thought of as describing
the outcome of a biased coin flip before the coin is flipped.

Probabilistic information. The type of information obtained by extending the state spaces of determin-
istic information to include arbitrary probability distributions over the deterministic states. This is
the main type of classical information to which quantum information is compared.

Probability amplitude. The squared norm of an amplitude with respect to a chosen orthonormal basis
{]i}}. Thus, the probability amplitude is the probability with which the s{atds measured in a
complete measurement that uses this basis.

Product state. For two quantum systenfsandB, product states are of the forj) |$).. Most states are
not of this form.

Program. An algorithm expressed in a language that can be understood by a particular type of computer.

Projection operator. A linear operatoi® on a Hilbert space that satisfi#8 = P'P = P. The projection
onto a subspack with orthogonal complement’ is defined as follows: I € V andy € W, then
P(x +y) = =.

Pseudo-code. An semi-formal computer language that is intended to be executed by a standard “ran-
dom access machine”, which is a machine model with a central processing unit and access to a
numerically indexed unbounded memory. This machine model is representative of the typical one-
processor computer. Pseudo-code is similar to programming languages such as BASIC, Pascal, or
C, but does not have specialized instructions for human interfaces, file management, or other “ex-
ternal” devices. Its main use is to describe algorithms and enable machine-independent analysis of
the algorithms’ resource usage.

Pure state. A state of a quantum system that corresponds to a unit vector in the Hilbert space used to
represent the system’s state space. In the ket notation, pure states are written in the)ferm
>, aili), where thei) form a logical basis ani", |a;|* = 1.

Quantum information. The type of information obtained when the state space of deterministic informa-
tion is extended by normalized superpositions of deterministic states. Formally, each deterministic
state is identified with one of an orthonormal basis vector in a Hilbert space and normalized su-
perpositions are unit-length vectors that are expressible as complex linear sums of the chosen basis
vectors. Itis convenient to extend this state space further by permitting probability distributions over
the quantum states (see the entry for “mixtures”). This extension is still called quantum information.

Qubit. The basic unit of quantum information. It is the quantum extension of the deterministic bit, which
implies that its state space consists of the unit-length vectors in a two dimensional Hilbert space.

Read-out. A method for obtaining human-readable information from the state of a computer. For quan-
tum computers, read-out refers to a measurement process used to obtain classical information about
a quantum system.
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Reversible gate.A gate whose action can be undone by a sequence of gates.

Separable state.A mixture of product states.

States. The set of states for a system characterizes the system’s behavior and possible configurations.

Subspace.For a Hilbert space, a subspace is a linearly closed subset of the vector space. The term can be
used more generally for a systémof any information type: A subspace @for, more specifically,
of the state space & is a subset of the state space that preserves the properties of the information
type represented by.

Superposition principle. One of the defining postulates of quantum mechanics according to which if
states|1), |2), ... are distinguishable thel, ;i) with >, |«;|* = 1 is a valid quantum state.

Such a linear combination is called a normalized superposition of the ftates

System. An entity that can be in any of a specified number of states. An example is a desktop computer
whose states are determined by the contents of its various memories and disks. Another example
is a qubit, which can be thought of as a particle whose state space is identified with complex, two-
dimensional, length-one vectors. Here, a system is always associated with a type of information that
determines the properties of the state space. For example, for quantum information the state space
is a Hilbert space. For deterministic information, it is a finite set called an alphabet.

Unitary operator. A linear operator/ on a Hilbert space that preserves the inner product. That is,
(Uz,Uy) = (z,y). If U is given in matrix form, then this expression is equivalent/t&/ = 1.

Universal set of gates.A set of gates that satisfies the requirement that every allowed operation on infor-
mation units can be implemented by a network of these gates. For quantum information, it means a
set of gates that can be used to implement every unitary operator. More generally, a set of gates is
considered universal if for every operaidr there are implementable operatdfsarbitrarily close
toU.
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